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The method of cell mappings has been developed as an efficient tool for the 
global study of dynamical systems. One of them, the generalized cell mapping 
(GCM), describes the behavior of a system in a probabilistic sense, and is essen- 
tially a Markov chain analysis of dynamical systems. Since the largest Lyapunov 
exponent is widely used to characterize attractors of dynamical systems, we 
propose an algorithm for that quantity by the GCM. This allows us to examine 
the persistent groups of the GCM in terms of their Lyapunov exponent, thereby 
connecting them with their counterparts in point mapping systems. 

KEY WORDS: Strange attractors; Lyapunov exponents; cell-to-cell map- 
ping; generalized cell mapping; nonlinear dynamical systems; H~non-Pomeau 
map; forced Duffing system. 

1. I N T R O D U C T I O N  

During  the past two decades, the theory of  dynamical  systems has advan-  
ced rapidly. A m o n g  the many  exciting developments,  the phenomena  of 
strange at tractors and chaotic  mot ion  have drawn a great deal of  at tent ion 
from researchers in many  different scientific disciplines (see references in 
Refs. 1 and 2). 

In the meanwhile the method  of  cell mapping  has been developed and 
has; proven to be a promising tool for the global study of  dynamical  
systems. The state space is discretized into a large collection of  cells, and a 
dynamical  system is described in terms of  a cell-to-cell mapping.  Two kinds 
of cell mapping  have been and are being further developed: simple cell 
mapping  ~3'4~ and generalized cell mapping.  ~s'6~ The generalized cell mapp-  
ing ( G C M )  describes the behavior  of a system in a probabilistic sense, with 
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the theory of the Markov chain as the basic tool of analysis. The GCM has 
been applied successfully to find the domain of attraction for the attractors 
in nonlinear dynamical systems and to study the statistical properties of 
strange attractors (7) as well as random vibration problemsJ s) It also served 
as the basis in the evaluation of the metric entropy for a certain class of 
maps of the intervalJ 9'~~ 

In this paper attractors of dynamical systems are studied with 
generalized cell mapping. They are represented as persistent groups in 
GCM. A computer algorithm is developed to compute the largest 
Lyapunov exponent by the method of GCM. Examples are drawn from 
two-dimensional point mapping systems and differential equations; the 
largest Lyapunov exponents of their attractors are computed by the  
proposed algorithm. The results indicate the effectiveness of the proposed 
algorithm in evaluating the largest Lyapunov exponent. 

2. A T T R A C T O R S  OF D Y N A M I C A L  S Y S T E M S  

Consider a (continuous) dynamical system governed by the differential 
equations 

dx 
-~=F(x , t ) ,  x ~ U = R  N, t ~ I ~ R  (1) 

where x is an N-vector and F: U • I--* R u is a smooth function. The vector 
field F generates a flow ~0(x, t) which is a smooth function and satisfies (1). 
When the system is periodic in time so that F is explicitly periodic in t, it is 
advantageous to construct a Poincar6 map ~1~ so that the governing 
equation for the system takes the form of a point mapping (or a discrete 
dynamical system) 

x(n+ 1)=G(x(n)), x G R  N, n e Z  (2) 

Along the flow of (1) the state space volume changes locally according 
to V" F. For dissipative systems the state space volume will contract on the 
average along the flow. This implies that as t ~ ~ ,  the initial state volume 
shrinks to zero and the motion of the system takes place on a set of 
measure zero, which is called an attractor. We will call a set A e U an 
attractor if it is an indecomposible closed invariant set with a 
neighborhood N such that for all x E N, the ~ limit of x is contained in 
A. ") There are essentially four kinds of attractors for the dissipative 
dynamical system (1): fixed points, limit cycles, tori, and strange attractors. 
They represent the stationary, periodic, quasiperiodic, and chaotic 
behavior, respectively. 
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For the point mapping (2), the local state space volume changes by a 
factor [det DG(x)I on each iteration, where DG(x) is the Jacobian matrix 
for G evaluated at x. Again, the long-term behavior of a dissipative system 
is represented by its attractors. 

The attractors of the system (1) will appear as attractors in the point 
mapping (2). The representation of the attractors of continuous dynamical 
systems in the point mapping, however, depends on how the point mapp- 
ing system is constructed. When system (2) is a Poincar6 map, the limit 
cycles appear as periodic points and the tori as limit cycles, while strange 
attractors remain as strange attractors in the point mapping. 

3. A T T R A C T O R S  AS PERSISTENT G R O U P S  IN THE G C M  

Here, we give a very brief discussion of the GCM. For more details 
and terminology, the reader is referred to Refs. 5 and 6. From the point 
mapping system (2) the cell mapping is constructed. First the domain of 
interest in the state space is discretized into a collection of cells with sides 
hi.. This collection of cells is called the cell state space and is denoted by S. 
The cells in S are labelled 1, 2 ..... N(S) according to an appropriate scheme, 
where N(S) is the total number of cells in S. The state space points in a cell 
are represented by a certain subset of them. Under the point mapping (2), 
th~s representation subset (or sampling set) of the cell i is mapped into 
their image points, and the cells to which these image points belong 
become the image cells of cell i. By counting how many points in the 
representation subset map into a particular image cell j we assign the 
probability Pji of cell i being mapped into cellj  in one mapping step. Ifpj~ is 
nonzero, we say that cell j is an image cell of cell i or cell i is a pre-image 
cell of cell j. The matrix P =  {p~j}, i, j =  1,..., N(S), is called the transition 
probability matrix. The cell probability vector ~(n) has components 
~i(n), i= 1, 2,..., N(S), which denotes the probability of the state of the 
system being in cell i at the nth step. Now the GCM is described by the 
following evolution equation in terms of the cell probability vector: 

~(n + 1)=PC(n) (3) 

It is easy to see that P completely controls the evolution process. 
The next step is to classify the cells according to their properties. The 

n-step transition probability n!n) is the probability of being in cell i after n r t j  

steps starting from cell j and is the (i, j ) th element of pn. Cell j leads to cell 
i if and only if there exists a positive integer m such that p~m~ > 0. The cells i 
and j communicate if and only if cell i leads to cell j and vice versa. The 
rroperty of communicativeness is a class property, so that it divides the 
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cells into disjoint subsets. A cell that communicates with every cell to which 
it leads is called essential. All the essential cells form isolated groups which 
have the property that the cells in the same group communicate, but cells 
belonging to different groups do not. These isolated groups are called per- 
sistent groups. A cell i for which Pii = 1 forms a persistent group by itself, 
and is called an absorbing cell. A persistent group with more than one cell 
is called either an acyclic group or a periodic group according to whether 
the period d of the group is one or greater than one. For  each persistent 
group the limiting probability distribution p is obtained, which will be an 
approximation to the invariant distribution for the attractor the persistent 
group represents. 

From its definition an attractor is an indecomposible closed invariant 
subset and has a neighborhood it attracts. A persistent group in the GCM 
is indecomposible since it is composed with essential cells. By considering 
the transition probability matrix in its normal form, (5) it is clear that the 
persistent group is isolated and invariant under the evolution law, and it 
attracts probabilities from the transient groups. Therefore attractors are 
represented as persistent groups in the GCM. From here on persistent 
groups will mean the persistent groups with more than one cell unless 
otherwise noted. 

It is easy to see that a stable fixed point is represented as either an 
absorbing cell or an acyclic persistent group. Consequently, stable periodic 
points of period k are represented as either absorbing cells or acyclic per- 
sistent groups in the GCM constructed from G k. In the remainder of this 
section we discuss attractors other than the fixed points and periodic 
points. The cell size hi denotes the resolution with which the states of the 
system in xi coordinates are measured. Therefore, once the hi are chosen, 
there exists a limit on the attractors that can be distinguished. For  exam- 
ple, the limit cycle right after the Hopf bifurcation (1~) can be arbitrarily 
small, so that in the world of finite precision it cannot be distinguished 
from a fixed point. When the cell size is adequately small, the attractors 
will be represented as persistent groups. 

4. THE  L Y A P U N O V  E X P O N E N T S  

Lyapunov exponents are quantitative measures of average exponential 
divergence or convergence of nearby trajectories of a system. (2~ Since they 
can be computed either for a model or from experimental data, they are 
widely used for the classification of the attractors. For  example, the strange 
attractors have the property that nearby trajectories have exponential 
separation locally while confined in a compact subset of the state space 
globally, thereby yielding at least one positive Lyapunov exponent. 
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The computation of Lyapunov exponents involves averaging the 
tangent map along the trajectory. The multiplicative ergodic theorem ~2! 
provides the characterization of the matrix product of the tangent map. We 
define DG, = D G ( x ~ ) ' . . D G ( x l ) ,  where DG(x)  is the Jacobian matrix for 
the point mapping (2) evaluated at x, and x~+ 1 = G(x~). Let (DGn)* denote 
the adjoint of DG,. For almost all x, 

lim { [DG. (x ) ]*  DG,,(x)} m" = A~ (4) 
n ~ o o  

exists and the logarithms of its eigenvalues are called Lyapunov charac- 
teristic exponents, denoted by 21 ~> 2 2 >/ " '"  /> 2N .(13) 

The largest (or maximal) Lyapunov exponent 2 characterizes the type 
of attractor in dynamical systems; the fixed point has 2 < 0 and the limit 
cycles 2 = 0, while strange attractors have 2 > 0. In this paper we will be 
concerned only with the largest Lyapunov exponent. When the largest 
Lyapunov exponent has multiplicity one, there exists a field of unit vectors 
w(x) such that 

Da(xi) w(xi)= a(xi) w(xi+ ,) (5) 

For the numerical computation of the largest Lyapunov exponent, 
direct application of the definition (4) is not satisfactory because of the 
repeated multiplication of the Jacobian matrix evaluated along the trajec- 
tory. Therefore, Benettin et al. (~4) have proposed a scheme which utilizes 
the linearity and the composition law of the tangent map, (~s) since the 
Jacobian matrix is the tangent map for the vectors. The scheme keeps track 
of a vector as it evolves under the tangent map. When the largest 
Lyapunov exponent is positive, the length of the vector increases exponen- 
tially, causing overflow problems. To evercome this difficulty of overflow in 
the computation, the vector is renormalized after a certain number of 
iterations. 

We briefly outline the scheme with renormalization at each iteration. 
Choose an initial condition x o in the domain of attraction U c  R N for the 
attractor in question. Let E, be the tangent space at point x , [ = G ' ( x o ) ] ,  
i.e., E, = T x R  N, and in this case E, =--R N. Choose a unit vector Wo e Eo at 
random. The recursive relation is then defined to be 

uk = IDG(xk_ 1) Wk_ II 

DG(xk_ 1) wk_ l (6) 
Wk---- • , k>~l 

~k 

where I'] denotes the length of a vector. For sufficiently large k, wk can be 
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expected to approach either +w(xk) or -w(xk)  of (5). The largest 
Lyapunov exponent is given by 

)~ = l ~ m  ~ In as (7) 
i=1  

Equation (5) implies that DG(xi)w(xi) and w(xi+ 1) are two vectors 
which may be in the same direction or in the opposite direction. In the for- 
mer case a(xi) is positive, while in the latter case it is negative. In the 
algorithm computing the largest Lyapunov exponent, the crucial quantity 
is c~k. Therefore, we can use either wk_ 1 or - w k _  1 in the first equation of 
(6), leading to the same result on ek. This, in turn, allows us to restrict the 
w~, i = 1, 2 ..... vectors to a set of vectors satisfying the condition wi.e > O, 
where e is a conveniently chosen unit vector. 

The proposed GCM algorithm for computing the largest Lyapunov 
exponent is mostly an implementation of the above scheme in the 
framework of GCM. Consider a motion representing the strange attractor 
of (2) under study. Let the trajectory of this motion be given by 
x i, i = 1, 2 ..... Starting with an arbitrary unit vector Wo in the tangent space 
at Xo, the tangent map described above and the normalization procedure 
yield a sequence of unit vectors w~, i = 1, 2,..., with wi in the tangent space 
at xi. 

Now consider a persistent group B which represents the strange 
attractor in the GCM method. Let N(B) be the number of cells in B. If the 
cells are sufficiently small and if they do not contain a periodic point, then 
(7) implies that all the wt associated with xt that are located in one cell, say 
cell j, will be nearly equal if I is sufficiently large, and may all be represen- 
ted with sufficient accuracy by an appropriately defined average unit flow 
vector u(j) associated with the cell j. This flow vector u(j) for cell j is the 
approximation to the field of unit vectors defined in (5) at the points inside 
the cell j. We then compute the Jacobian of the point mapping DG(x(:)) at 
the center point x(j) of cell j and evaluate 

c~(j) = iDG(x(jl) u(j)l (8) 

which is the cell counterpart of c~k given in (6), and which also 
approximates the value [a(xi)l in (5) at the cell j. The largest Lyapunov 
exponent is now computed by 

N(B) 

)~= ~ p j ln~( j )  (9) 
j = l  

where pj is the limiting probability of cell j. 
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Next, we still need to investigate how u(j), j = 1, 2,..., N(B) for various 
cells are related to each other. Consider the N(B) cells of the persistent 
group. At each cell j there is a unit cell flow vector u(j). The tangent map- 
ping DG(x(j~) of u(j) yields a vector DG(x(j)) u(j) which is to be assigned 
to all the image cells of cell j. Consider now a cell k. Suppose that the pre- 
image cells of cell k are cells ix, J2,..., J~- Then u(k) will be related to the 
vectorial sum of the contributions of tangent mappings of u(jl), 
u(j2) ..... U(jm) from cells j l ,  J2,..., Jm" These contributions should, however, 
be weighted by the limiting probabilities Pjl, PJ2,-.., PJ~ of the pre-image cells 
and also the transition probabilities Pkjl, P~J2,..., Pkj~. Thus, 

Zirn= x { +_DG(x(:,)) u(jg)} Pj, Pkj, 
u ( k )  = 

[Em=, { +__DG(x(y,)) u(ji) } P;,Pkj, t 

= ZJv_(_q ~ { +_OG(x(j)) u(j)} PjPk; (10) 
IZ; /~  ~ { +DG(x(j)) u(j)} p/Pkj[ 

Here the presence of _+signs is based upon the reasoning given in the 
paragraph following (7). This equation relates u(j) vectors to each other. 
In the algorithm it will be used as an updating formula for u(j) from one 
iterative cycle to the next. At the nth cycle the set of unit flow vectors will 
be denoted by un(j). 

Equations (8)-(10) are the bases for the proposed algorithm, which is 
an iterative one. The algorithm begins with a set of initiating steps. 

(i) An arbitrary initial unit vector Uo is assigned to all cells of the 
persistent group, i.e., uo(j) = Uo, j = 1, 2,..., N(B). 

(ii) Compute ~0(J) from (8) and compute 2o from (9). Here the sub- 
script 0 has been appended to ~ and 2 to indicate they are for the 
0th iterative cycle. 

Next, we begin the iterative cycles. A typical nth cycle, n = 1, 2,..., consists 
of the following steps. 

1. Using u,_  ~(j), compute a set of updated u,(j) by (10). 

2. Use u'(j)  for u(j) on the right-hand side of (8) to compute ~,(j), 
~(j) for the nth cycle. 

3. Use ~,,(j) for ~(j) on the right-hand side of (9) to compute 2", 2 
for the nth cycle. 

4. Let the Ces~ro sum of 2,, be 2(n), 

1 " 
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5. If 1 2 ( n ) - ~ ( n -  1)L < 6 for a predetermined 6, then the Cesfiro sum 
,~(n) is considered to have converged and is taken to be the largest 
Lyapunov exponent. If the Cesfiro sum 2(n) has not converged, 
then repeat the iterative steps 1-5. Here 4(0) will be assumed to be 
equal to 2 o. 

In the cases of strange attractors and limit cycles examined in this paper, 
the vectors Un(j) also converge, which in turn makes ),z converge as well as 
its Cesfiro sum 2(n). For a persistent group that represents a stable spiral 
point, the vectors u,(j) at certain cells rotate from step to step and 
therefore do not converge. However, the Cesfiro sum ~(n) does converge. 

In summary, this scheme determines a flow vector for each cell, and 
computes the largest Lyapunov exponent in a spatial averaging process, 
rather than by temporal averaging as for other methods. 

5. E X A M P L E S  

To test the proposed algorithm, we apply it to several well-known 
examples. First consider the stretch-contraction-reposition map (7'16) 

x~(n+ 1)=)~jx2(n) mod 1 

1 
xl(n + 1)= 22x1(n) + x2(n)--~1x2(n + l) 

(12) 

where 21 is a positive integer greater than 1 and 22 is a positive number. 
The Jacobian matrix is constant for all x, 

I  13t 

Therefore all the cells in the persistent group B have 

u(i) = [011, ~(i) = )~1, i =  1,2 ..... N(B) (14) 

so that the largest Lyapunov exponent is In )~1 > 0, indicating that the per- 
sistent group represents the strange attractor of the system (12). 

A second example is the nonlinear point mapping" _(6) 

xl(n + 1 ) = 0.9x2(n ) + 1.81xZ(n) 

x2(n + 1) = --0.9xl(n) 
(15) 
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1.0 

X 2 

-1.25 
/ .0 I .25 X 1 

Fig. 1. The persistent group for the nonlinear point mapping system (15). 

The G C M  is constructed f rom the state space - 1 . 0 ~ < x  1< 1.25, 
- 1.125 ~< x2 < 1.0 with hi = h2 = 0.028125. The  sampling is 7 x 7. There  is an 
acyclic persistent group of 156 cells near  the origin as shown in Fig. 1; see 
also Figs. 4-6  in Ref. 6. Mos t  of the cells have a limiting probabi l i ty  dis- 
t r ibut ion of less than  10 -6. Table  I shows the results of the compu ta t i on  
for the largest L y a p u n o v  exponent  on the VAX 11/750. In all the com- 
puta t ions  in this section the first several values of  the )oj were ignored in 
Eq. (11) to expedite the convergence and c~ was chosen to be 0.0001. 
Usual ly  convergence of 2(n) is reached quite rapidly. For  this case, where 
the persistent g roup  represents a stable spiral fixed point ,  the flow vector  of  
the cell to which the fixed point  belongs rotates  approx ima te ly  90 deg at 

Table I. The Largest Lyapunov Exponents 

System equation GCM Benettin's scheme 

(15) --0.105 ~0.105 
(16) 0.002 o.oool 
(17) 0.42 0.42 
(18) 0.66 0.64 
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each iteration, reflecting the nature of the fixed point. This effect prevents 
convergence of flow vectors in this case. The Cesfiro sum ;t(n) does, 
however, converge. The negative Lyapunov exponent indicates that the 
persistent group corresponds to the stable fixed point at the origin. 

For an example of the limit cycle, we choose the Van der Pol equation 

5~ q- (1 - -  X2) 2 q-- X =- 0 (16) 

For this system we integrate the equation for a time interval 1 and the cell 
mapping is set up for - 3.0 ~< x < 3.0, - 3.0 <~ 2 < 3.0 with hi --- h2 = 0.2. The 
sampling was 5 x 5, the same as the rest of the examples in this section. 
When the Jacobian matrix is not explicitly available as in this case, it has 
to be determined numerically. In most methods the approximate Jacobian 
matrix has to be determined by computing additional point mapping for 
the points near the trajectory, requiring more numerical integrations. But 
for the GCM additional integrations are not necessary, since they are 
already done in the construction of the transition probability matrix. 

Applying the GCM to (16), one finds that there is a persistent group 
corresponding to the limit cycle indicated with a Lyapunov number close 
to zero. For this case, as well as the next two examples, both the flow vec- 
tors un(j) at each cell and ;~, converge. The flow vectors for the persistent 
group can be seen approximately in the flow direction of the limit cycle; see 
Fig. 2. The slight deviation of the Lyapunov exponent from zero is 

Fig. 2. 
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The flow vectors of the persistent group for the Van der Pol equation (16). 
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reasonable, because the persistent group covers the limit cycle with a finite 
width across it. 

The H6non-Pomeau map (~7) 

xl (n  + 1 ) =  1 + x 2 ( n ) -  axZ(n) 

xz(n + 1 ) = bx l (n)  
(17) 

has a well-known strange attractor for the parameters a = 1.4, b = 0.3. The 
region in the state space - 1.5 ~< x~ < 1.5, - 0 . 5  ~ x2 < 0.5 is set up into a 
cell space of 900 x 900 cells. The data in the Table I indicate that the per- 
sistent group shown in Fig. 2 of Ref. 7 corresponds to a strange attractor. 
The flow vectors for cells near the unstable fixed point are shown in Fig. 3. 

Finally, we consider the Duffing equation in the form (~8) 

2 + k2  + x 3 = B c o s  t (is) 

with k=0 .05 ,  B =  7.5. The cell space is constructed with 100 x 100 cells 
covering 1 ~ x < 4 ,  - 6 ~ < 2 < 6 .  A Poincar6 map for the differential 
equation (18) is constructed by numerically integrating the equation over 
one period. The persistent group representing the strange attractor is 
shown in Fig. 4a. The flow vectors for a part of the persistent group cover- 

0 . 2 0 5  

Fig. 3, 

2 

0.175 . . . . . . . . .  

0.58 0.68 
x 

1 

The flow vectors ~ r  cells near the unstable fixed point of the H6non-Pomeau map 
(17). 
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( a )  (b) 
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Fig. 4. (a) The persistent group for the Duffing equation (18), and (b) the flow vectors for a 
part of the persistent group in (a). 

ing 2.3 < x <  3.3, 3 . 0 < 2 < 6 . 0  are shown in Fig. 4b. The large, positive 
Lyapunov exponent of value 0.66 indicates that the persistent group 
corresponds to a strange attractor. It is to be noted that the exponent 0.66 
reported here is the largest Lyapunov exponent for the corresponding 
Poincar6 map of the Duffing system. This value should be divided by 2re, 
the period of excitation for (18), to yield the largest Lyapunov exponent for 
the flow. The authors are grateful to Professor F. Moon for pointing out 
the need to clarify this possible point of confusion. 

6. C O N C L U D I N G  R E M A R K S  

In this paper we have presented an algorithm for the largest Lyapunov 
exponent by the generalized cell mapping method. The data obtained for 
several examples agree very well with the Lyapunov exponents obtained 
with Benettin's scheme. This has opened a way to characterize the per- 
sistent groups and absorbing cells by generalized cell mapping. 

We also remark here that in using GCM to study a nonlinear system 
we will usually find persistent groups. But these persistent groups could 
represent equilibrium states, limit cycles, quasiperiodic solutions, and/or 
strange attractors. We need a method which will allow us to differentiate 
these cases. The proposed algorithm in this paper can serve that purpose; 
therefore, it will become an integral part of the methodology of GCM. 
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